Imagine wanting to play a game with other children, but not feeling confident enough about motor skills to join in. Or, being involved in sports programs, but wishing your timing was a bit better.

Kids Core was developed to promote physical development augment sports programs and encourage smooth, coordinated movement patterns. It is an aquatic program based upon principles of core development (strengthening, endurance, and flexibility) with two additional components seen frequently as educational concerns: sensory processing and rhythm.

Any child can benefit from organized and well supervised play. For children who do not regularly engage in active movement or play, Aquatic Kids Core can be a starting point to improve participation at home, school or community. The program was initially designed to assist children who demonstrated gross and fine motor challenges due to fluctuations in muscle tone, poor coordination, inability to produce rhythm patterns or inefficient sensory processing. The program has expanded to include children who exhibit behavioral concerns, poor endurance and performance in the classroom.

Identified diagnoses have included Asperger’s syndrome, Traumatic Brain Injury, Developmental Coordination Disorder, Hypotonia, Down syndrome, Fetal Alcohol Syndrome, and Cerebral Palsy. Participation in Kids’ Core should not be limited to specific diagnoses, but should include any child age 6 and up who want to improve life skills at home or school.

AQUATIC KIDS CORE PROGRAM COMPONENTS DESCRIPTION

Core stability: When muscles of the core are strong and work together, a child can effectively engage in balance movements of running, jumping, climbing to more coordinated and rhythmical movements such as running, skipping, completing obstacle courses, jump rope games, hide and seek. Fine motor and gross motor manipulative skills such as throwing, catching, kicking, using sign language, writing, manipulating toys, and building rely on a strong, stable core. Core training is typically comprised of
strength, endurance, and flexibility exercises. For this aquatic program, rhythm and sensory has been added for a well rounded program for children.

Strength: Strength training uses resistance exercises to help increase the ability to exert or resist force. Young children participating in strength training do not gain muscle bulk, instead improve nerve activation, and promote muscle adaption which improves motor coordination and muscle strength. Strength training supports ligament growth and bone density. Strength training has many benefits including improved mental health, socialization, self esteem as well as improved motor control and fitness, leaner body, decreased risk of obesity or type 2 Diabetes, lower blood pressure and cholesterol levels. Children as young as 7 or 8 can become involved in strength training in a safe and highly supervised setting. Daily strength development occurs when a child plays on jungle gyms, plays tug o war, ball games, swing, pushes a merry-go-round, help with household chores. The aquatic environment is one of those safe and highly supervised areas to begin strength training. For young children games that incorporate long lever activities and increased resistance from turbulence and resistance toys promote strengthening. For older children using aquatic techniques such as Burdenko’s deep and shallow water exercises as well as exercises using buoyancy resisted equipment enhances strengthening.

Endurance: During play and physical exercise, children develop physical endurance. As endurance, or the ability to play for longer periods increase, muscles become stronger, which in turn helps control weight gain and potentially limiting the development of weight related diseases such as hypertension, diabetes or obesity. Endurance increases during regular aerobic exercise such as swimming, jump rope and bike riding. When developing endurance, exercises should focus on increasing the length of exercise time before increasing resistance or intensity.

Flexibility: Flexibility is the ability of joints to move through full range of motion. Factors that influence flexibility are joint structure, age and gender, connective tissue, muscle bulk, proprioceptors, the internal environment (health, affects of exercise), injury. Flexibility is achieved through stretching. Exercises that are designed for flexibility while actively engagement in daily activities (reaching for toys, putting on clothing, grooming) will benefit very young children. As children age, physiologic changes occur

1. *Strength training for children and teenagers*. Downloaded from fitnessvenues.com on 6-10-11.
in strength and body mass which may lead to limited flexibility. Between ages 6-10, hip and shoulder mobility declines. Maximum flexibility of the spine occurs by age 8 or 9.2 Young children should avoid static stretches, but can engage in tasks that are naturally found in the environment (reaching for toys, bending over to tie shoes, stretch in prone or supine or do somersaults in the pool). Flexibility training during the teen years focuses on rapid growth. Pain occurs during growth due to slower growth of muscle and connective tissue compared to bone. Training focuses on hips, lower back, hamstrings, shoulders, scapula to protect posture.3 Injury during sports or reduced movement due to sudden physical changes may also occur. Beyond mid teens, flexibility training may focus on sport specific training.

Use of dynamic stretching before sports or exercise routines may assist in reducing injury. Dynamic stretches can be incorporated into the school day at recess or study breaks and by engaging in home activities like playing Twister, Wii games. Static stretches can be included in programming for older children but only when muscles are warm.

Sensory: A child’s ability to process sensory information affects motor control and movement patterns. Ultimately efficient movement increases a child’s engagement in play and social interaction. **The vestibular system**, working in harmony with the auditory and visual system affects balance and position in space. Movement and balance, auditory/language processing, muscle tone, bilateral integration, motor planning, emotional security, gravitational security, and visual spatial perception, are influenced by the vestibular system **The proprioceptive system** processes information for spatial orientation, body position and timing of movements by determining how muscle force is exerted and how much muscles stretch with active movement, primarily extensor movement. Motor control and motor planning grading of movement, postural stability, emotional security are also facilitated through the proprioceptive system. It works closely with the vestibular system, which is a source of specialized proprioceptive input through active movement. When the proprioceptive and tactile systems work together, it is referred to as somatosensory processing. **The tactile system** functions are protection and

2 Grasso,B. *Flexibility- Are We Hurting Kids?*. Developing Athletics.

3 Ibid., p.2
discrimination. Stimulation comes from touch on the surface of the skin; light touch stimulates a protective response, deep pressure provides discrimination. Deep pressure input affects body awareness, motor planning, emotional security, social skills, gross motor (positional activities, movement within the environment), fine motor (use of small muscles of the hands, fingers, tongue, lips, mouth, toes) manipulation of materials, articulation, and academic learning.

Rhythm: Rhythm simply defined is “the regular recurrence of an action or function, as of the beat of the heart…” or “regular recurrence of elements in a system of motion”⁴. Rhythm adds smoothness and efficiency to movement. We experience rhythms in our environment—the circadian rhythm (the 24 hour rhythm of life including sleeping, eating, eliminating), sinus rhythms (heart beats), rhythm of tides (high, low, neap), rhythms of seasons (fall, spring, summer, winter) just to name a few. Our daily lives follow a rhythm including dressing, eating, moving around the house, community and work places. Skilled athletes demonstrate rhythm in movement and are often participate in music and dance classes to improve or refine rhythm and balance.

Two of the most highly rhythmic activities are music and language. The development of rhythm begins in infancy with parents bouncing, jiggling and moving children in rhythmical patterns. This provides sensory input and begins to regulate systems. In early childhood, simple games like patty cake and itsy bitsy spider builds timing circuits and as a child grows games such as jump rope, hop scotch, bouncing on beds/furniture further increases rhythm development. In teen years and beyond, dancing, athletics, playing a musical instrument, horse riding and swimming all promote rhythmic development. Rhythm is around us, about us and guides our daily lives.

PROGRAM DESIGN

A well designed aquatic program can promote growth in strength, flexibility, endurance, rhythm and sensory processing. The Kids’ Core program is designed to be 8 weeks long. Time during the first and last weeks is for pre and post testing. Testing for fitness and motor development is completed on deck and a general water skills test is administered to determine safety and independence in shallow and deep water. Each week, a topic is introduced and aquatic exercises focuses on that area as well as reinforcing previously

⁴ “rhythm”. Dictionary.com
learned exercises. Home programs are designed to increase awareness of the topic area and engaging the whole family in activity. For example: Week 2 Topic: Rhythm. Deck work: Bucket drums. Pool work: Step patterns on the aqua steps, braided sponge pull, water blasters. Home program: Identifying rhythms in the environment. Each home activities record sheet includes the rhythm (birds), the location (city park), the person(s) who assisted (mom and dad), the time spent (15 minutes).

Kids’ Core promotes healthy fit children with or without identified disabilities. It can be easily adapted to therapeutic or recreational programs, sport clinics or health courses. For more information, contact ATRI for upcoming presentations.
KIDS’ CORE BIBLIOGRAPHY

STRENGTH

Strength Training for Children and Adolescents. Excerpt by Holly J. Benjamin, MD, MPH and Kimberly M. Glow, MD.

ENDURANCE

SENSORY

On-line resources:

- www.tsbvi.edu/Outreach/seehear/fall97/sensory.htm Sensory Integrative Dysfunction in Young Children by Linda C. Stephens, MS, OTR/L. FAOTA.
- www.keystoneblind.org/kidsclub/exercises Sensory Integration Exercises
- www.memorialhospital.org/SensoryIntegration.htm Sensory Integration Therapy.

RHYTHM

Download on 6/30/2010
Movement Awareness. Pillar of Light Movements.
http://rhythmex.com/MovAwareness.html

http://www.jneurosci.org/cgi/content/fulll/22/23/10388. Downloaded 7/24/2009
FLEXIBILITY

Grasso, Brian J *Conditioning: Flexibility- Are We Hurting Kids?*. Excerpt from Grasso, B. (2004), *Flexibility- Are We Hurting Kids?,* Brian Mackenzie’s Successful Coaching (ISSN 1745-7513) Issue 17.

Flexibility training: the role of stretching in sports performance
http://www.pponline.co.uk/encyc/flexibility-training-the-role-of-stretching-in-sports-performance
Download on 2/27/2011

Brian Grasso *Flexibility Training for Young Athletes*, May 4, 2009.
http://iyca.org/flexibility-training-for-young-athletes/

The Physiology of Flexibility. Sports Fitness Advisor.
http://www.sport-fitness-advisor.com/flexibility.html

Jessica Kingsley Publishers, Philadelphia, PA.

